skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dollar, Franklin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivated by the profound impact of laser technology on science, arising from an increase in focused light intensity by seven orders of magnitude and flashes so short electron motion is visible, this roadmap outlines the paths forward in laser technology to enable the next generation of science and applications. Despite remarkable progress, the field confronts challenges in developing compact, high-power sources, enhancing scalability and efficiency, and ensuring safety standards. Future research endeavors aim to revolutionize laser power, energy, repetition rate and precision control; to transform mid-infrared sources; to revolutionize approaches to field control and frequency conversion. These require reinvention of materials and optics to enable intense laser science and interdisciplinary collaboration. The roadmap underscores the dynamic nature of laser technology and its potential to address global challenges, propelling progress and fostering sustainable development. Ultimately, advancements in laser technology hold promise to revolutionize myriad applications, heralding a future defined by innovation, efficiency, and sustainability. 
    more » « less
  2. Abstract We report a method for the phase reconstruction of an ultrashort laser pulse based on the deep learning of the nonlinear spectral changes induce by self-phase modulation. The neural networks were trained on simulated pulses with random initial phases and spectra, with pulse durations between 8.5 and 65 fs. The reconstruction is valid with moderate spectral resolution, and is robust to noise. The method was validated on experimental data produced from an ultrafast laser system, where near real-time phase reconstructions were performed. This method can be used in systems with known linear and nonlinear responses, even when the fluence is not known, making this method ideal for difficult to measure beams such as the high energy, large aperture beams produced in petawatt systems. 
    more » « less
  3. This report is a summary of the mini-conference on Workforce Development Through Research-Based, Plasma-Focused Science Education and Public Engagement held during the 2022 American Physical Society Division of Plasma Physics annual meeting. The motivation for organizing this mini-conference originates from recent studies and community-based reports highlighting important issues with the current state of the plasma workforce. Here, we summarize the main findings presented in the two speaker sessions of the mini-conference, the challenges, and recommendations identified in the discussion sessions and the results from a post-conference survey. We further provide information on initiatives and studies presented at the mini-conference, along with references to further resources. 
    more » « less